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Assumption-Based Argumentation

Premises
Γ = {r}

Assumptions
Ab = {q, p, s}

R = {s → t;
t, p → q′

s, r , q → p′}

Contrariness
Operator
p′ = p
q′ = q

Assumption-Based Framework: (L,R, Γ,Ab, ).

Argumentation Framework

{q, s}

{p, s}
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The Argumentation Pipeline.

Assumption-Based
Framework

Argumentation
Framework

Acceptable
Assumptions

Accepted
Conclusions
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Assumptions-based Frameworks

Definition (Assumption-based framework)

An assumption-based framework is a tuple ABF = (L,R,Ab, ,≤) where:

L is a formal language

R is a set of rules

∅ 6= Ab ⊆ L is the set of candidate assumptions.

: Ab → ℘(L) is a contrariness operator.

≤ is a total order over the assumptions.

Flat Frameworks

We will additionally assume that frameworks are flat, i.e.
A1, . . . ,An → A 6∈ R for A ∈ Ab.
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Deductive System (L,R)

Premises
Γ = {r}

Assumptions
Ab = {q, p, s}

R = {s → t;
t, p → q′

s, q → p′}

Example

{s} `R t

{s, p} `R q′

Definition (R-deduction)

An R-deduction from ∆ of A,
written ∆ `R A, is a finite tree
where

1 the root is A,

2 the leaves are either empty
nodes or elements from ∆,

3 the children of non-leaf nodes
are the conclusions of rules in R
whose antecedent correspond to
their children,

4 ∆ is the set of all A ∈ Ab that
occur as leaves in the tree.
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Attacks

Example

Ab = {p, q, s}.
R = {q → p; p → q}
{q} `R p.

{p} `R q.

Extensions :

{q, s}

{p, s}

Definition (Attacks)

Given an assumption-based
framework ABF = (L,R,Ab, ), a
set of assumptions ∆ ⊆ Ab:

∆ attacks an assumption
A ∈ Ab iff ∆′ `R A for some
∆′ ⊆ ∆.

∆ attacks a set of assumptions
Θ ⊆ Ab iff ∆ attacks some
A ∈ Θ.

We’ll denote attack with the symbol
↪→f .
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The Argumentation Pipeline: where do Priorities come in?.

Assumption-Based
Framework

≤ (over
Assumptions)

Object Level:
[2, 9]

Argumentation
Framework

Defeat:
[5]

Acceptable
Assumptions

Meta Level:
[12]

Accepted
Conclusions
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Comparing Sets of Assumptions

Definition (Lifting ≤)

Given an assumption-based framework ABF = (L,R,Ab, ,≤) and
∆ ⊆ Ab, we define:

∅ 6< A for any A ∈ Ab and

∆ < A if B < A where {B} = min(∆).
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From Attack to Defeat

Definition (Attack, defeat, reverse defeat)

Given an assumption-based framework ABF = (L,R,Ab, ,≤) is a set of
assumptions ∆ ⊆ Ab and an assumption A ∈ Ab, we say that:

∆ d-defeats A iff there is a ∆′ ⊆ ∆ s.t. ∆′ `R B for some B ∈ A and
∆′ 6< A.

∆ d-defeats Θ if ∆ d-defeats some A ∈ Θ.

∆ r -defeats Θ ⊆ Ab iff either
I ∆ d-defeats Θ, or
I there is a Θ′ ⊆ Θ s.t. Θ′ `R B for some B ∈ A, A ∈ ∆ and A > Θ′

We will also denote d-defeat and r -defeat with, respectively, the symbols
↪→d and ↪→r .
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Example

Björn wants to go out with his friends Agnetha (A), Benny (B) and
Frida (F ).

If Benny is together with Agnetha, he doesn’t want to go out with
Frida (A,B → F ).

Björn likes Benny more then Agnetha (A < B).

Björn likes Frida more then Benny (B < F ).

{A,B} ↪→f {F}
{F} ↪→r {A,B} {A,B} 6↪→d {F}
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Conflict-Free Sets of Assumptions

Example (for f -defeat)

Ab = {p, q, s}.
R = {q → p; p → q}
{q} `R p.

{p} `R q.

{q} `R s.

Extensions :

{p}

{q, s}

{p, q}

Definition (Argumentation
semantics)

Where ∆ ⊆ Ab and x ∈ {d , r , f }, ∆
is:

x-conflict-free iff for every
∆′ ∪∆′′ ⊆ ∆, ∆′ 6↪→x ∆′′.
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Admissibility Semantics

Example

Ab = {p, q, s}.
R = {q → p; p → q}
{q} `R p.

{p} `R q.

Extensions :

{q}

{p}

{q, s}

{p, s}

Definition (Argumentation
semantics)

Where ∆ ⊆ Ab and x ∈ {d , r , f }, ∆
is:

is x-admissible iff it is
x-conflict-free and for each set
of assumptions Θ ⊆ Ab, if
Θ ↪→x ∆, then ∆ ↪→x Θ.

is x-preferred iff it is maximally
(w.r.t. set inclusion)
x-admissible.
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The Relation between d- and r -defeat

{A,B} ↪→f {F}
{F} ↪→r {A,B} {A,B} 6↪→d {F}

Definition (Contraposition [10])

ABF = (L,R,Ab, ,Val,≤) is closed under contraposition if for every
∆ ⊆ Ab:

if ∆ `R C for some C ∈ A

then for every B ∈ ∆ it holds that

({A} ∪∆) \ {B} `R D for some D ∈ B.

Conjecture

r -defeat seems to be a kind of contraposition.

So perhaps if ABF is closed under contraposition, r -defeat and
d-defeat coincide?
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Well. . . [10]
Let Ab = {a, b, c , d} and d > b, Let x̂ ∈ x for every x ∈ {a, b, c , d}, and

R =

{
b, c → d̂ b, d → ĉ c , d → b̂ b → b̂

b, c → â a, c → b̂ a, b → ĉ c → ĉ

}

{a}{b, c}

{a, b} {b} {b, d}

{a, c} {c} {c , d}

{d}

Figure: Direct defeats are represented by dashed arrow whereas r -defeats are
represented by dotted-arrows.

Note the large ammount of self-defeating sets of assumptions.
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b, c → â a, c → b̂ a, b → ĉ c → ĉ
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The Relation between d- and r -defeat

Definition (Cycle-Freeness)

ABF = (L,R,Ab, ,Val,≤) is cycle-free if for every ∆ ⊆ Ab: if A ∈ ∆
then:

∆ 6`R B for any B ∈ A.

Theorem

If ABF is closed under contraposition and cycle-free then:
∆ is d-preferred iff ∆ is r -preferred.

Cycle-Free ABFs

Cycle-Free ABFs have not been studied in the literature yet.

Seems a valuabe concept (e.g. for studying crash-resistance in ABA).

However, since their behaviour is not well-known, we provide
translations between ABAd and ABAr .
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The Plan

ABAf ABAd ABAr

Sec. 4

Sec. 3

Sec. 3
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From ABAd to ABAf .

ABAf ABAd ABAr

Sec. 4

Sec. 3

Sec. 3
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Example

Example

Let Ab = {p, q}, p < q,

R = {q → p′} and

p′ = p.

ABAd

{q} `R p′ and

p < q.

Consequently, {q} ↪→d p

For every element of the
language A ∈ L we now
have elements Ai .

The superscripts are used to
express priorities in the
object language.

Rules are translated in such
a way that the superscripts
are carried over in the right
way.
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Getting a grip on ≤

Given (L,R,Ab, ,≤) we suppose that:

there is a totally ordered set (Val,�) and

a function f : Ab → Val such that:
I a ≤ b iff f (a) � f (b)

We will further expand the set Val with a maximum element ω, i.e.
with α ≺ ω for all α ∈ Val, and (abusing notation) refer to the
resulting set Val ∪ {ω} simply as Val.
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Translation: Formal

Definition (Translation τ)

We translate a given framework ABF = (L,R,Ab, ,≤) into the following
framework τ(ABF) = (τ(L), τ(R), τ(Ab), , (τ(Ab)× τ(Ab))):

τ(L) = {Aα | A ∈ L, α ∈ Val}
where → A ∈ R, τ(→ A) =→ Aω.

where A1, . . . ,An → A ∈ R and min({α1, . . . , αn}) = {α},

τ(A1, . . . ,An → A) = A1
α1 , . . . ,An

αn → Aα

τ(R) = {τ(r) | r ∈ R}.
τ(Ab) = {Af (A) | A ∈ Ab}
Aα ∈ Bβ iff A ∈ B and α 6≺ β.
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Example

Example

Let Ab = {p, q}, p < q and
R = {q → p′} and p′ = p.

Val = {1, 2}
f (p) = 1

f (q) = 2

τ(Ab) = {p1, q2}.
τ(R) 3 q2 → (p′)2

p′2 ∈ p1.

ABAd

{q} `R p′ and

p < q.

Consequently, {q} ↪→d p

ABAf

{q2} `R (p′)2 and

Consequently, {q2} ↪→f p1
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Adequacy

Theorem

Given an assumption-based framework ABF:
∆ is d-preferred (in ABF) iff τ(∆) is f -preferred (in τ(ABF))
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From ABAr to ABAd .

ABAf ABAd ABAr

Sec. 4

Sec. 3

Sec. 3
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Ab = {A,B,F}
R = {A,B → F}
A < B < F .

{A,B} ↪→f {F}
{F} ↪→r {A,B} {A,B} 6↪→d {F}
{F} 6↪→r {A} {F} 6↪→r {B}

ABAd
∧ ABArABAr

∧
Section 4.1Section 4.2
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Closing Frameworks under Conjunction.

ABAd
∧ ABArABAr

∧
Section 4.1Section 4.2
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Definition (Conjunction)

Where ABF = (L,R,Ab, ,≤), we define ABF∧ = (L∧,R∧,Ab∧, ,≤),
where:

L∧ = {A1 ∧ . . . ∧ An | A1, . . . ,An ∈ L, n ∈ N}.
R∧ is the smallest set:

I containing R.
I closed under:
I (∧-introduction) A1, . . . ,An →

∧
{A1, . . . ,An}

I (∧-elimination)
∧

∆→ A for all A ∈ ∆

Ab∧ = {
∧

∆′ | ∆′ ⊆fin Ab}
For any ∆ ⊆ Ab, let:

∆∧ = {
∧

∆′ | ∆′ ⊆fin ∆}
∆∧ = {A |

∧
∆′ ∈ ∆,A ∈ ∆′}.
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Definition (ABF∧ framework, continued)

Given an ABF = (L,R,Ab, ,≤) framework, we define
ABF∧ = (L∧,R∧,Ab∧, ,≤) where L∧,R∧ and Ab∧ are defined as
above, and (abusing notation),

≤ is extended to Ab∧ as follows:
I min(∆) =df min({f (A) | A ∈ ∆}).
I Where ∆ ⊆ Ab, f (

∧
∆) =df min(∆).

I Where ∆ ⊆ Ab∧ we define min(∆) =df min(∆∧).
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Example

Let Ab = {A,B,F}, R = {A,B → F} and A < B < F .

L∧ = {A,B,F ,A ∧ B,B ∧ F ,A ∧ F ,A ∧ B ∧ F}.
R∧ = R∪ {A,B → A ∧ B; A ∧ B → A; A ∧ B → B, . . .}.
Ab∧ = {A,B,F ,A ∧ B,B ∧ F ,A ∧ F ,A ∧ B ∧ F}
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Semantics for ABA∧

Definition

Given ABF = (L,R,Ab, ,≤) x ∈ {d , r , f } and ∆ ⊆ Ab∧,
let ℘∧(∆) be the set of all ∆′ ⊆ ∆ that are closed under ∧-intro and
∧-elim.

∆ is ∧-closed iff ∆ ∈ ℘∧(Ab)

∆ is x-∧-conflict-free iff there are no ∆1,∆2 ∈ ℘∧(∆) such that ∆1

x-defeats ∆2.

∆ is x-∧-admissible iff it is x-∧-conflict-free, ∧-closed and for all
Θ ∈ ℘∧(Ab) that x-defeat ∆, there is a ∆′ ∈ ℘∧(Delta) that
x-defeats Θ.

x-∧-preferred extensions are defined as usual.
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Adequacy

Theorem

Given an assumption-based framework ABF and x ∈ {d , r}:
∆ is x-preferred (in ABF) iff ∆∧ is x-∧-preferred (in ABF∧).
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ABAr
∧ to ABAd

∧

ABAd
∧ ABArABAr

∧
Section 4.1Section 4.2
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Ab∗ = {A∗ | A ∈ Ab∧} such that:
I L ∩ Âb = ∅ and
I whenever A 6= B then A∗ 6= B∗.
I Let τ(L) = L∧ ∪ Ab∗.

Definition

Given an ABF, τ(ABF) = (τ(L), τ(R),Ab∧, ˜,≤) where:

C → (
∧n

i=1 Ai )
∗ ∈ R̂ iff:

I A1, . . . ,An `R∧ B
I B ∈ C
I {A1, . . . ,An} < C

τ(R) = R∧ ∪ R̂
Where A ∈ Ab∧, let B ∈ Ã iff B ∈ A ∪ {A∗}.
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Example

Let Ab = {A,B,F}, R = {A,B → F} and A < B < F . We have the
following translated framework: τ(ABF) = (τ(L), τ(R),Ab∧, ˜,≤) where:

τ(L) = L∧ ∪{A∗,B∗,F ∗, (A∧B)∗, (B ∧ F )∗, (A∧ F )∗, (A∧B ∧ F )∗}.
τ(R) = R∧ ∪ {F → (A ∧ B)∗}.

ABAr
∧

{F} ↪→r {A,B,A ∧ B}.
since {A,B} `R F and

{A,B} < F .

ABAd
∧

{F} ↪→d {A,B,A ∧ B}.
since {F} ` (A ∧ B)∗ and

{F} 6< A ∧ B.
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Why new atoms Ab∗?

Example

Let Ab = {A,F} and R = {A→ F ′,A′ → D},
A′ ∈ A, F ′ ∈ F
and A < F .

Suppose we would add F → A′ instead of F → A∗.

Then we would derive information (D) not derivable in ABAr .
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Adequacy

Theorem

Given an assumption-based framework ABF:
∆ is r -∧-preferred (in ABF∧) iff τ(∆) is d-∧-preferred (in τ(ABF∧))
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Outlook
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In the paper we consider . . .:

Other semantics

Various lifting principles for non-total orders.

Various conditions on extensions for non-flat frameworks.
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A Broader Picture

Logic
Programming

Parametrized
Logic
Programming

Assumption-Based
Argumentation

ASPIC:
Structured Argumentation
Frameworks

Default
Logic

Adaptive Logic

Sequent-Based
Argumentation

Preferential Semantics

Default Assumptions

[1]

[11]

?

[6]

[4]

[7]

[8]

[7]

[3]

In Preparation

?

?

?

?

?

[2]
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Thank you!
Questions or remarks?
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