Named Entity Recognition and Linking in Tweets based on Linguistic Similarity

Arianna Pipitone, Giuseppe Tirone, and Roberto Pirrone
(arianna.pipitone, giuseppe.tirone, roberto.pirrone)@unipa.it

Named Entity Recognition and Linking (NEEL) is a sub-task of information extraction that aims at locating and classifying each named entity mention in a tweet into the classes of a knowledge base, such as DBPedia.

According to [1], NEEL consists of:
- **mention detection** related to the identification of the entity mention in a tweet, and
- **candidate selection** related to the identification of the link in DBPedia that defines such an entity.

The figure shows the proposed architecture.

Mention Detection
The Chunking Activity module outputs all the possible words in the tweet to be analyzed for entity mention detection. The basic considerations are:

- Given a tweet t, its components can be classified in two categories based on the linguistic properties of the inherent chunks, that are:

 1. $M = \{m_i | m_i$ is a micropost of $t_i\}$, which contains both the main post that generates a discussion, and all the posts in the thread; chunks can be identified by blank spaces between words;
 2. $H = \{h_i | h_i$ is a hashtag or a tag of $t_i\}$, which contains the hashtags and the tags in t; chunking is not trivial, because no typical separation characters are used.

- **Informal language can influence linking:** the chunks devised so far must be rewritten using words already owned by the system. For this purpose, automatic correction [1] based on the WordNet source is applied to the identified chunks.

Formally, let be:

- $tok(s)$ the function that returns the list of tokens L_s split using blank spaces for the string s;
- $a_star(s)$ the function that returns the list of chunks L_c for the string s based on the A^* strategy reported in [2];
- $ichl(k)$ the function that returns the list L_{c_w} of the words that are syntactically similar (\approx) to the token k, using the automatic correction 1.

The Chunking Activity module implements the functions:

$$c_m : H \cup M \rightarrow L_c$$

$$c_m(s) = \begin{cases} a_star(s) & s \in H \\ a_star(tok(s)) & s \in M \end{cases}$$

$ichl : L_c \rightarrow L_w, ichl(k) = \{w_i | w_i \approx k\}$

whose output is the set $C = H \cup M \cup L_{c_w}$.

It is well acknowledged [1] that an entity in a tweet can be only a proper noun (NP or NPS), and a POS tagger 2 is applied to the words in C for identifying the possible candidates to be a mention. The process ends with the definition of the set MD that will contain all candidate mentions:

$$MD = \{m_i | m_i = \{c_i, c_{i+1}, \ldots, c_{i+n}\} \subset C, pos(m_i) \in \{NP, NPS\}\}$$

being n_i, value the extent of the i-th mention.

Candidate Selection
The Mapping to Meanges module from QuASIT [3] is adapted for candidate selection; the a_cneel function returns, for each mention in MD, the best matching entities in DBPedia:

$$a_cneel(m_i) = \{ c_k | stem(m_i) = stem(i) \land sim(concat(m_i, i_j) > \tau, i_j = map(c_k), c_k \in C \}$$

where:

- $stem(w)$ returns the stem of the word w;
- $sim(w, w_j)$ returns the distance between two words by combining their Jaro-Winkler 3 and Levenshtein 4 distances:

$$sim(w, w_j) = 0.5*\text{jarowinkler}(w, w_j) + 0.5*\text{levenshtein}(w, w_j)$$

The τ value was experimentally fixed to 0.7 as better threshold for $sim(\cdot, \cdot)$.

- $concat(m)$ returns the chunks concatenation in a mention m;
- $map(c)$ returns set $\{i_j\}$ containing the instances in DBPedia whose stem of their class label is similar or equal to a mention stem in MD.

C is the set of class names in DBPedia.

The set $\cup_{MD} a_cneel(m_i) \cup I$ is the assertion graph of the tweet in DBPedia that realizes our NEEL task.

References

[5] https://courses.washington.edu/user/v02/permtable/